

Robe DC- BEADS Lab, Flinders University Collaboration

Initial discussions focused on developing a better understanding of coastal processes in the Robe region.

Robe DC- BEADS Lab, Flinders University Collaboration

ARC Linkage proposal developed first.

Funding from both ARC and Robe DC

Concurrently, produced a review of beach-surfzone historical changes utilizing DEW topographic profile data.

Subsequently, applied for a Flinders Univ Enterprise scholarship which comprises 50/50 funding from an Industry partner (Robe DC) and Flinders.

Funds originally applied to the ARC application then utilised to fund equipment and research expenses.

Location of Robe, SA

Robe's Beaches

Erosion of Robe's Beaches

Town Beach, March 2013

Fox Beach, June 2020

Hoopers Beach, June 2022

Wave climate

CAWCR* wave hindcast model

Wave rose for Robe based on 42 years of CAWCR data

^{*}Centre of Australian Weather and Climate Research

Wind and wave climate

Annual wave rose for Robe

SWAN wave model

-Area Grid: 40 km x 32 km 2000 m x 2000 m resolution

-Medium Grid: 20 km x 16 km 500 m x 500 m resolution

-Local Grid: 12 km x 13.8 km 150 m x 150 m resolution

Simulation of 3 cases:

-South-west swell waves (CAWCR model)

-Northern wind waves (wind speed: 20 m/s)

-Combined

Wave model results

South-West swell waves:

-Offshore: 3 m, 225 °, 14.5 s

-At location: 1.415 m, 281 °, 17.5 s

Northern wind waves:

-20 m/s wind from North, no swell

-At location: 1.255 m, 329.5 °, 4.2 s

Combined:

-At location: 1.80 m, 296 °, 17.65 s

Long-term shoreline change

Digital Earth Australia (DEA) Coastlines for Hoopers Beach 1988 - 2020

ShorelineS (Roelvink et al., 2020)

ShorelineS model for Robe

Results of ShorelineS model

- -Unrealistic spit development
- -Cliff bypassing not properly implemented in the model yet
- -No accretion behind breakwater

More complex model needed

Delft3D morphological model

Wave model

-Area Grid: 1000 m x 1000 m resolution

-Medium Grid: 150 m x 150 m resolution

-Local Grid: 30 m x 30 m resolution

Flow model

-Same as smallest wave grid

-Around entire headland

Morphological model

Field measurements

Future research

Sediment pathways

- Long-term, large scale
- -Morphological model (e.g., Delft 3D), field measurements

Storm Erosion

- Short-term, smaller scale
- -Morphological model (e.g., Xbeach), field measurements

Nature-based solutions

-E.g., artificial reef Modellling in physical wave flume, numerical models

